Теплообменные аппараты
15 Mar 2019 в 17:37
Общие сведения
Теплообменный (или теплоиспользующий) аппарат является одним из наиболее распространенных и важных элементов энергетических, коммунально-бытовых и технологических установок. Любые преобразования энергии из одного вида в другой, а также передача энергии от одного аппарата либо машины к другому сопровождаются переходом некоторой части всех других видов энергии в тепловую.
Поэтому практически во всех машинах и аппаратах теплообмен имеет важное значение.
На теплоиспользующие аппараты приходится значительная доля капиталовложений в энергетические, коммунально-бытовые и технологические установки. При строительстве тепловых электростанций (если учесть, что паровые котлы также являются теплообменниками) капиталовложения в теплообменные аппараты составляют до 70% капиталовложений на оборудование станций. На современных нефтеперерабатывающих заводах капиталовложения в теплообменные аппараты достигают 40...50%, на газобензиновых заводах — 40%.
Теплообменные аппараты, как и другие элементы энергетических, коммунально-бытовых и технологических установок, работают в условиях переменного режима. Однако эксплуатационные, статические и динамические характеристики теплообменных аппаратов зависят не только от изменения расходных режимов и технологических параметров потоков, но и от таких факторов, как накопление загрязнений, накипи, сажи, смол на стенках труб, появление коррозии и др.
Высокая тепловая производительность теплоиспользующего аппарата определяется многими факторами, в первую очередь, интенсивным теплообменом, высокой теплопроводностью материала, малым заносом поверхностей теплообмена, своевременной продувкой и промывкой внутренних полостей аппарата, поддержанием оптимального режима работы. Экономичность работы аппарата может быть достигнута малыми затратами энергии на прокачивание теплоносителей, минимальным уносом технологического продукта с продувочными газами и промывочными водами, увеличением межремонтных периодов, максимальной механизацией и автоматизацией обслуживания.
Заданные технологические условия процесса (температура, давление, химический состав и концентрация среды, время технологической обработки) и высокое качество продукции обеспечиваются выбором оптимальных температур теплоносителей, правильным расчетом поверхности теплообмена, подбором надлежащих конструкционных материалов, не вступающих в химическое взаимодействие со средой, выбором наивыгоднейших скоростей теплоносителей, строгой цикличностью или непрерывностью процесса и удобством его регулирования.
Виды и классификация
Теплообменными аппаратами {теплообменниками) называются устройства, предназначенные для обмена теплотой между греющей и обогреваемой рабочими средами. Последние принято называть теплоносителями.
Необходимость передачи теплоты от одного теплоносителя к другому возникает во многих отраслях техники: энергетике, химической, металлургической, нефтяной, пищевой и других отраслях промышленности.
В котельном агрегате теплота, выделяющаяся при горении топлива, передается воде и пару, т.е. котельный агрегат представляет собой совокупность теплообменных аппаратов. В атомной силовой установке выделяемая ядерным реактором теплота воспринимается первичным теплоносителем, который сам становится радиоактивным. В двигателе используется вторичный теплоноситель, который получает тепло от первичного в теплообменном аппарате. Процесс регенерации в газотурбинной установке осуществляется путем передачи теплоты в теплообменнике от отработанных продуктов сгорания сжатому воздуху.
Широкое распространение теплообменных аппаратов обусловило многообразие их конструктивного оформления.
Теплообменные аппараты классифицируются следующим образом:
• по назначению — подогреватели, конденсаторы, охладители, испарители, паропреобразователи и т.п.;
• принципу действия — рекуперативные, регенеративные и смешивающие.
Рекуперативными называются такие теплообменные аппараты, в которых теплообмен между теплоносителями происходит через разделительную стенку. При теплообмене в аппаратах такого типа тепловой поток в каждой точке поверхности разделительной стенки сохраняет постоянное направление.
Температура нагрева теплоносителя составляет 400...500 °С для конструкций из углеродистой стали и 700...800 °С для конструкций из легированных сталей.
В рекуперативных теплообменниках теплоносители омывают стенку с двух сторон и обмениваются при этом теплотой. Процесс теплообмена протекает непрерывно и имеет обычно стационарный характер. На рисунке ниже показан пример рекуперативного теплообменника, в котором один из теплоносителей протекает внутри труб, а второй омывает их наружные поверхности.
Стенка, которая омывается с обеих сторон теплоносителями, называется рабочей поверхностью теплообменника.
Регенеративными называются такие теплообменные аппараты, в которых два или большее число теплоносителей попеременно соприкасаются с одной и той же поверхностью нагрева.
Во время соприкосновения с разными теплоносителями поверхность нагрева или получает теплоту и аккумулирует ее, а затем отдает, или, наоборот, сначала отдает аккумулированную теплоту и охлаждается, а затем нагревается. В разные периоды времени теплообмена (нагрев или охлаждение поверхности нагрева) направление теплового потока в каждой точке поверхности нагрева изменяется на противоположное.
В качестве примера на рисунке ниже представлена схема регенеративного воздухоподогревателя котельного агрегата с медленно вращающимся (2...5 об/мин) ротором — аккумулятором теплоты. Ротор имеет набивку из тонких гофрированных стальных листов (см. рис. б), заключенных в закрытый кожух 3. К кожуху присоединяются воздушный и газовый короба. Во время работы теплообменника ротор его вращается, поэтому нагретые элементы набивки непрерывно переходят из полости горячего газа в полость холодного воздуха, а охладившиеся элементы — наоборот.
Смешивающими называют такие теплообменные аппараты, в которых тепло- и массообмен происходят при непосредственном контакте и смешивании теплоносителей. Поэтому смешивающие теплообменники иногда называют контактными. Наиболее важным фактором в рабочем процессе смешивающего теплообменного аппарата является поверхность соприкосновения теплоносителей. В качестве примера на рисунке ниже показана схема смешивающего теплообменника (деаэратора) для подогрева воды паром при термическом удалении растворенных газов (воздуха).
Основные теплоносители
В качестве теплоносителей в зависимости от назначения производственных процессов могут применяться самые разнообразные газообразные, жидкие и твердые вещества.
В производственных аппаратах и системах отопления и горячего водоснабжения наиболее широкое распространение получили следующие теплоносители.
Водяной пар как греющий теплоноситель получил больше распространение благодаря следующим своим достоинствам.
1. Высокие коэффициенты теплоотдачи при конденсации водяного пара позволяют получать относительно небольшие поверхности теплообмена.
2. Большое изменение энтальпии при конденсации водяного пара позволяет расходовать малое массовое количество его для передачи сравнительно больших количеств теплоты.
3. Постоянная температура конденсации при заданном давлении дает возможность наиболее просто поддерживать постоянный режим и регулировать процесс в аппаратах.
Наиболее часто употребляемое давление греющего пара в теплообменниках составляет от 0,2 до 1,2 МПа.
Горячая вода получила большое распространение в качестве греющего теплоносителя, особенно в отопительных и вентиляционных установках. Подогрев воды осуществляется в специальных водогрейных котлах, производственных технологических агрегатах (например, в печах) или водонагревательных установках ТЭЦ и котельных.
Горячую воду как теплоноситель можно транспортировать по трубопроводам на значительные расстояния (на несколько километров).
При этом понижение температуры воды в хорошо изолированных трубопроводах составляет не более 1°С на 1 км. Достоинством воды как теплоносителя является сравнительно высокий коэффициент теплоотдачи. Как правило, в системах производственного и коммунального отопления используется горячая вода с температурой 70... 150 (200)°С.
Дымовые и топочные газы как греющая среда применяются обычно на месте их получения для непосредственного нагрева промышленных изделий и материалов, если физико-химические характеристики последних не изменяются при загрязнении сажей и золой. Если по условиям эксплуатации загрязнение обрабатываемого материала недопустимо, дымовые газы направляются в рекуперативный теплообменник, где отдают свою теплоту воздуху, а последний нагревает обрабатываемый материал.
Достоинством топочных газов является возможность нагрева ими материала до весьма высоких температур, которые требуются иногда по технологическим условиям производства.
Однако дымовые и топочные газы как греющая среда имеют ряд недостатков.
1. Малая плотность газов влечет за собой необходимость получения больших объемов для обеспечения достаточной теплопроизводительности, а последнее приводит к созданию громоздких трубопроводов.
2. Вследствие малой удельной теплоемкости газов их необходимо подавать в аппараты в большом количестве с высокой температурой.
Последнее обстоятельство вынуждает применять огнеупорные материалы для трубопроводов.
3. Из-за низкого коэффициента теплоотдачи со стороны газов теплоиспользующая аппаратура должна иметь большие поверхности нагрева и поэтому получается весьма громоздкой.
Высокотемпературные теплоносители.
В настоящее время в промышленности для высокотемпературного обогрева, кроме дымовых газов, применяют минеральные масла, органические соединения, расплавленные металлы и соли. Характеристика некоторых высокотемпературных теплоносителей приведена в таблице:
Низкотемпературные теплоносители
представляют собой вещества, кипящие при температурах ниже 0°С.
Типичными представителями их являются: аммиак NH3, диоксид углерода С02, сернистый ангидрид, S02 и большой ряд галоидных производных насыщенных углеводородов, применяющихся в качестве хладоагентов в холодильной технике.
Категория: Электрика
Случайная статья: Элегазовые выключатели
Общие сведения
Теплообменный (или теплоиспользующий) аппарат является одним из наиболее распространенных и важных элементов энергетических, коммунально-бытовых и технологических установок. Любые преобразования энергии из одного вида в другой, а также передача энергии от одного аппарата либо машины к другому сопровождаются переходом некоторой части всех других видов энергии в тепловую.
Поэтому практически во всех машинах и аппаратах теплообмен имеет важное значение.
На теплоиспользующие аппараты приходится значительная доля капиталовложений в энергетические, коммунально-бытовые и технологические установки. При строительстве тепловых электростанций (если учесть, что паровые котлы также являются теплообменниками) капиталовложения в теплообменные аппараты составляют до 70% капиталовложений на оборудование станций. На современных нефтеперерабатывающих заводах капиталовложения в теплообменные аппараты достигают 40...50%, на газобензиновых заводах — 40%.
Теплообменные аппараты, как и другие элементы энергетических, коммунально-бытовых и технологических установок, работают в условиях переменного режима. Однако эксплуатационные, статические и динамические характеристики теплообменных аппаратов зависят не только от изменения расходных режимов и технологических параметров потоков, но и от таких факторов, как накопление загрязнений, накипи, сажи, смол на стенках труб, появление коррозии и др.
Высокая тепловая производительность теплоиспользующего аппарата определяется многими факторами, в первую очередь, интенсивным теплообменом, высокой теплопроводностью материала, малым заносом поверхностей теплообмена, своевременной продувкой и промывкой внутренних полостей аппарата, поддержанием оптимального режима работы. Экономичность работы аппарата может быть достигнута малыми затратами энергии на прокачивание теплоносителей, минимальным уносом технологического продукта с продувочными газами и промывочными водами, увеличением межремонтных периодов, максимальной механизацией и автоматизацией обслуживания.
Заданные технологические условия процесса (температура, давление, химический состав и концентрация среды, время технологической обработки) и высокое качество продукции обеспечиваются выбором оптимальных температур теплоносителей, правильным расчетом поверхности теплообмена, подбором надлежащих конструкционных материалов, не вступающих в химическое взаимодействие со средой, выбором наивыгоднейших скоростей теплоносителей, строгой цикличностью или непрерывностью процесса и удобством его регулирования.
Виды и классификация
Теплообменными аппаратами {теплообменниками) называются устройства, предназначенные для обмена теплотой между греющей и обогреваемой рабочими средами. Последние принято называть теплоносителями.
Необходимость передачи теплоты от одного теплоносителя к другому возникает во многих отраслях техники: энергетике, химической, металлургической, нефтяной, пищевой и других отраслях промышленности.
В котельном агрегате теплота, выделяющаяся при горении топлива, передается воде и пару, т.е. котельный агрегат представляет собой совокупность теплообменных аппаратов. В атомной силовой установке выделяемая ядерным реактором теплота воспринимается первичным теплоносителем, который сам становится радиоактивным. В двигателе используется вторичный теплоноситель, который получает тепло от первичного в теплообменном аппарате. Процесс регенерации в газотурбинной установке осуществляется путем передачи теплоты в теплообменнике от отработанных продуктов сгорания сжатому воздуху.
Широкое распространение теплообменных аппаратов обусловило многообразие их конструктивного оформления.
Теплообменные аппараты классифицируются следующим образом:
• по назначению — подогреватели, конденсаторы, охладители, испарители, паропреобразователи и т.п.;
• принципу действия — рекуперативные, регенеративные и смешивающие.
Рекуперативными называются такие теплообменные аппараты, в которых теплообмен между теплоносителями происходит через разделительную стенку. При теплообмене в аппаратах такого типа тепловой поток в каждой точке поверхности разделительной стенки сохраняет постоянное направление.
Температура нагрева теплоносителя составляет 400...500 °С для конструкций из углеродистой стали и 700...800 °С для конструкций из легированных сталей.
В рекуперативных теплообменниках теплоносители омывают стенку с двух сторон и обмениваются при этом теплотой. Процесс теплообмена протекает непрерывно и имеет обычно стационарный характер. На рисунке ниже показан пример рекуперативного теплообменника, в котором один из теплоносителей протекает внутри труб, а второй омывает их наружные поверхности.
Стенка, которая омывается с обеих сторон теплоносителями, называется рабочей поверхностью теплообменника.
Регенеративными называются такие теплообменные аппараты, в которых два или большее число теплоносителей попеременно соприкасаются с одной и той же поверхностью нагрева.
Во время соприкосновения с разными теплоносителями поверхность нагрева или получает теплоту и аккумулирует ее, а затем отдает, или, наоборот, сначала отдает аккумулированную теплоту и охлаждается, а затем нагревается. В разные периоды времени теплообмена (нагрев или охлаждение поверхности нагрева) направление теплового потока в каждой точке поверхности нагрева изменяется на противоположное.
В качестве примера на рисунке ниже представлена схема регенеративного воздухоподогревателя котельного агрегата с медленно вращающимся (2...5 об/мин) ротором — аккумулятором теплоты. Ротор имеет набивку из тонких гофрированных стальных листов (см. рис. б), заключенных в закрытый кожух 3. К кожуху присоединяются воздушный и газовый короба. Во время работы теплообменника ротор его вращается, поэтому нагретые элементы набивки непрерывно переходят из полости горячего газа в полость холодного воздуха, а охладившиеся элементы — наоборот.
Смешивающими называют такие теплообменные аппараты, в которых тепло- и массообмен происходят при непосредственном контакте и смешивании теплоносителей. Поэтому смешивающие теплообменники иногда называют контактными. Наиболее важным фактором в рабочем процессе смешивающего теплообменного аппарата является поверхность соприкосновения теплоносителей. В качестве примера на рисунке ниже показана схема смешивающего теплообменника (деаэратора) для подогрева воды паром при термическом удалении растворенных газов (воздуха).
Основные теплоносители
В качестве теплоносителей в зависимости от назначения производственных процессов могут применяться самые разнообразные газообразные, жидкие и твердые вещества.
В производственных аппаратах и системах отопления и горячего водоснабжения наиболее широкое распространение получили следующие теплоносители.
Водяной пар как греющий теплоноситель получил больше распространение благодаря следующим своим достоинствам.
1. Высокие коэффициенты теплоотдачи при конденсации водяного пара позволяют получать относительно небольшие поверхности теплообмена.
2. Большое изменение энтальпии при конденсации водяного пара позволяет расходовать малое массовое количество его для передачи сравнительно больших количеств теплоты.
3. Постоянная температура конденсации при заданном давлении дает возможность наиболее просто поддерживать постоянный режим и регулировать процесс в аппаратах.
Наиболее часто употребляемое давление греющего пара в теплообменниках составляет от 0,2 до 1,2 МПа.
Горячая вода получила большое распространение в качестве греющего теплоносителя, особенно в отопительных и вентиляционных установках. Подогрев воды осуществляется в специальных водогрейных котлах, производственных технологических агрегатах (например, в печах) или водонагревательных установках ТЭЦ и котельных.
Горячую воду как теплоноситель можно транспортировать по трубопроводам на значительные расстояния (на несколько километров).
При этом понижение температуры воды в хорошо изолированных трубопроводах составляет не более 1°С на 1 км. Достоинством воды как теплоносителя является сравнительно высокий коэффициент теплоотдачи. Как правило, в системах производственного и коммунального отопления используется горячая вода с температурой 70... 150 (200)°С.
Дымовые и топочные газы как греющая среда применяются обычно на месте их получения для непосредственного нагрева промышленных изделий и материалов, если физико-химические характеристики последних не изменяются при загрязнении сажей и золой. Если по условиям эксплуатации загрязнение обрабатываемого материала недопустимо, дымовые газы направляются в рекуперативный теплообменник, где отдают свою теплоту воздуху, а последний нагревает обрабатываемый материал.
Достоинством топочных газов является возможность нагрева ими материала до весьма высоких температур, которые требуются иногда по технологическим условиям производства.
Однако дымовые и топочные газы как греющая среда имеют ряд недостатков.
1. Малая плотность газов влечет за собой необходимость получения больших объемов для обеспечения достаточной теплопроизводительности, а последнее приводит к созданию громоздких трубопроводов.
2. Вследствие малой удельной теплоемкости газов их необходимо подавать в аппараты в большом количестве с высокой температурой.
Последнее обстоятельство вынуждает применять огнеупорные материалы для трубопроводов.
3. Из-за низкого коэффициента теплоотдачи со стороны газов теплоиспользующая аппаратура должна иметь большие поверхности нагрева и поэтому получается весьма громоздкой.
Высокотемпературные теплоносители.
В настоящее время в промышленности для высокотемпературного обогрева, кроме дымовых газов, применяют минеральные масла, органические соединения, расплавленные металлы и соли. Характеристика некоторых высокотемпературных теплоносителей приведена в таблице:
Низкотемпературные теплоносители
представляют собой вещества, кипящие при температурах ниже 0°С.
Типичными представителями их являются: аммиак NH3, диоксид углерода С02, сернистый ангидрид, S02 и большой ряд галоидных производных насыщенных углеводородов, применяющихся в качестве хладоагентов в холодильной технике.
СПРАВОЧНИК ЭНЕРГЕТИКА
Под общей редакцией А.Н. Чохонелидзе
Категория: Электрика
Случайная статья: Элегазовые выключатели